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The correlations of the electric potential fluctuations in a classical one-compo- 
nent plasma are studied for large distances between the observation points. The 
two-point correlation function for these fluctuations is known to decay slowly 
for large distances, even if exponential clustering holds for the charge correla- 
tion functions. In this paper the asymptotic behavior of the general k-point elec- 
tric potential correlation functions is analyzed. Each of these correlation func- 
tions can be split into a reducible part, which is given by a sum of products of 
lower-order correlation functions, and a remaining irreducible part. It is shown, 
on the basis of an exponential clustering hypothesis for the charge correlation 
functions, that for all k >~ 3 the irreducible parts of the electric potential correla- 
tion functions decay faster than any inverse power of the distance, if one or 
more of the observation points move far away from the others. Hence, the 
two-point electric potential correlation function is the only one with a slow 
algebraic decay. The same statement holds for the correlation functions of the 
electric field fluctuations. 

KEY WORDS: One-component plasma; electric fields; correlation functions; 
asymptotic behavior. 

1. I N T R O D U C T I O N  

T h e  e lec t r ic  p o t e n t i a l  in a sys tem of  c h a r g e d  p o i n t  par t ic les  is a n o n l o c a l  

q u a n t i t y  t h a t  is d e t e r m i n e d  by the cha rge  d i s t r i b u t i o n  at  pos i t i ons  b o t h  

nea r  to  a n d  d i s t an t  f r o m  the  p o i n t  of  obse rva t ion .  As a c o n s e q u e n c e ,  one  

m a y  expec t  t ha t  co r r e l a t i ons  of  f l uc tua t i ons  in the  e lectr ic  p o t e n t i a l  at  dif- 

ferent  o b s e r v a t i o n  po in t s  will  pers is t  even  w h e n  these  po in t s  a re  far  apar t .  
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Indeed, it has been proved (1) that the two-point correlation function 
W(2)(rl, r2) that describes correlations in the fluctuations of the electric 
potential at the points rl and r2 is a slowly decaying function of the 
distance ]rl-r2L, with an asymptotic behavior inversely proportional to 
the distance. Likewise, the correlation function for the fluctuations in the 
electric field possesses a slowly decaying tail inversely proportional to the 
third power of the distance. 

A more complete picture of the behavior of the correlations of the elec- 
tric potential fluctuations is gained by studying the higher-order correlation 
functions W(k)(rl ..... rk) for k ~> 3, which describe correlations of the electric 
potential fluctuations at k different observation points rl,..., rk. In par- 
ticular, one may wonder whether these higher-order correlation functions 
possess slowly decaying tails as well, if one or more of the observation 
points move toward infinity. It is the purpose of the present paper to deter- 
mine the asymptotic behavior of the electric potential correlation functions 
W ~k) for arbitrary k. The asymptotic form of the correlation functions for 
the electric field fluctuations then follows by differentiation. 

As a model for the Coulomb system, we shall adopt the classical one- 
component plasma, in which a set of identical charged particles move in an 
inert neutralizing background of opposite charge. The equilibrium proper- 
ties of this system have been studied extensively. (2) In particular, so-called 
multipole sum rules have been established under the assumption that the 
charge correlation functions decay exponentially fast. In the following this 
exponential clustering will be assumed throughout. 

2. CORRELATION FUNCTIONS FOR POTENTIAL 
FLUCTUATIONS 

The general k-point equilibrium correlation function describing 
potential fluctuations in a one-component plasma is defined as 

W(k)(rl ..... rk) = (&0(rl)---&o(rk)) (2.1) 

for integer k/> 2. Here 6q~(r)= q~(r)- ((p(r)) is the fluctuation in the elec- 
tric potential at the position r. This potential is generated by the plasma 
particles of charge e and by the uniform background with charge density 
-ne.  The brackets indicate a canonical ensemble average at an inverse 
temperature /L The correlation function W (~) as defined in (2.1) is meant 
to be the thermodynamic limit, with the number of plasma particles N and 
the volume V both tending to o0 at fixed particle density n = N/V, of the 
corresponding finite-system function. The existence of this limit, a prerequi- 
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site for which is the presence of a neutralizing background, is taken for 
granted in the following. 

By writing the electric potential in (2.1 
get 

1 
W~k~(rl ,..., r~) = e ~ ~ dr'~.-, dry, ,  

*re Ir~--r'll d 

in terms of their sources, we 

4~ Irk-r~l  
D{k)(r] ..... r~,) 

(2.2) 

Here the sources are described by the k-point density correlation function 

D(k)(r] ..... r~,) = ~(r i -- q~,) -- n --. 3(r~, -- q~k) -- n (2.3) 
- - 1  ct 1 

with q, the position vectors of the plasma particles. It should be noted that 
in the thermodynamic limit the average local particle density at the 
position r~ is given by n. 

The density function D ~ can be expanded in terms of Ursell functions 
h (j) of order j<~k. Examples are 

Dt2)(rl, r2) = rt2ht2)(rl, r2) + n0(2)(rl, r2) (2.4) 

D(3)(rl, r2, r3) = n3h(3)(rl, r2, r3) + r/216(2)(r1, r2) h{2)(rl, r3) 

+ 6{2)(rl, r3) h<2)(rl, r2) + 6{2~(r2, r3) h{Z)(rl, rE)] 

+ n6t3)(rl, r2, r3) (2.5) 

generalized k-point delta function 6~k)(rl ..... rk) with k~>2 
as the (product of) delta function(s) 6 ( r l - r 2 ) . . . 6 ( r l - r k ) .  

where the 
is defined 
Incidentally, we remark that by definition D(t)(r)= 0. 

The Ursell functions h (~) possess the cluster property: they are 
appreciably different from zero only if all their arguments are close 
together. As stated already in the introduction, we shall assume exponential 
clustering for the Ursell functions. Stated otherwise, they are supposed to 
decay faster than any inverse power of the distance, if one of the position 
variables is sent to infinity. Clearly, the density functions D (k/with k = 2, 3, 
as given in (2.4)-(2.5) share this property. For higher k this is no longer 
true. In fact, D ~) for k~>4 contains contributions that are products of 
lower-order D (j) functions with disjoint sets of position arguments. For 
general k/> 2 we write D (k) as a sum of two terms: 

D(k~(rl ..... rk)-- n(k~t- rk) +~(k)~- - -  ~ i r r  t ' l  , "  . . . .  r e d l , = l  . . . . .  rk) (2.6) 

The irreducible part DI~ ) has the cluster property. It is a sum of terms 
of which the simplest are nkh r and mS,k), as in (2.4)-(2.5). The remaining 
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terms are products of one or more generalized delta function(s) and an 
Ursell function h (p/ multiplied by n p, with 2 ~< p ~< k - 1 .  These terms can 
be found by writing all partitions of the k labels of the position vectors 
occurring in D}~] in groups of arbitrary size. A generalized delta 
function is associated to each group of size of two or higher, while a group 
of size one yields a factor 1. The arguments of the Ursell function are 
found by choosing one label from each group. With the formal definition 
h (1)-- 1 all terms in D}r~ ) follow in a unique way from the above recipe. 
Similar functions have been considered before. (3'4) As an example, we write 
the irreducible part of D(4): 

D(a)g. r4 ) = n4h(4)(r 1,..., r4 ) irr t* 1 ~'"~ 

+ ng[O(2)(r l ,  r2) h(3)(rx, r3, r4) + 5 terms] 

+ n216(3)(r l ,  r2, r3) h(2)(r l ,  r4) + 3 terms] 

+ n216(Z)(rl, r2) 6(2)(r3, r4) h(2)(rl, r3) + 2 terms] 

+ n6(4)(rl,..., r4) (2.7) 

where the terms that are not written out explicitly follow by permutation 
of the indices. 

Each partition of the labels 1 ..... k can be characterized by a set of non- 
negative integers {kj} such that kj gives the number of groups of size j in 
the partition. Defining Sp = Y~i kjJ p for all nonnegative integer p, we have 
S~ = k, while So gives the number of groups in the partition. Hence, the 
irreducible part of D (k/can formally be written as 

D~Yr )= E'  Z nS~176 [I  [6(J)] kj (2.8) 
{kj} perm j 

where the prime on the summation symbol indicates the condition $1 = k 
and where we used the conventions h ~  1 and 6 (~)- 1. The symbol Y.perm 
denotes a sum over the permutations that give rise to a reshuffling of the 
labels over the groups. Obviously, the number of these permutations for 
fixed values of {k]} is 

k! 
W{k'} - (1!) k' (2!)k~...kl ! kR! ' "  (2.9) 

The reducible part r)(k) in (2.6) is a product of lower-order irreducible D (k) Ured 
functions: 

(k) r Dred( ' ..... rk)=  Z (P) (q) Dirr (ril ..... r~)Dirr(r~§ r~§ 
part 

(2.1o) 
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The sum extends over all partitions (i~,..., ip), ( ip+! ..... ip+q) .... of 1 ..... k in 
groups that each contain at least two labels. Clearly, the reducible part of 
D <k) does not vanish if any group of two or more position vectors is far 
away from the other ones. 

Having discussed the general form of the density functions D (k~, we 
find upon substitution of (2.6) with (2.10) into (2.2) that the electric 
potential correlation functions can be written as 

w<~(r~,..., r~) = w}~)(r~ ..... r~) + y~ W<~)~. " ' i r r  ~-zt~'"~ rip) 
pa rt 

x w~q)(rip + ~ ..... reo+q) ..- (2.11) 

with the irreducible correlation functions W}~ ) defined in a way analogous 
to (2,2), with D/~) replaced by Dir r(k). The electric potential correlation func- 
tions are thus known once their irreducible parts for general k have been 
determined. From now on we shall concentrate on these irreducible parts. 

The irreducible density function n<k)r, r~) depends only on the dif- irr ~ 1 ~'",  

ferences of the position vectors, so that we may write it as r>(k)(, r/k), ~ i r r  ~,~ 12 ~'",  

with r+j- r ~ -  r/. Shifting the integration variables in (2.2), we may write the 
irreducible correlation functions W}~ ~ as 

(, 

W } ~ ) ( r l  ,..., rk) = e ~ j dr '12' ' '  dr'lk F(~)(r12 -- r'12 ..... rlk - r'lk) 

I"~(k)[rt + 
X ~ i r r  ~,=12, '",  r l k )  

with the function F <~) defined as 

(2.12) 

F(k)(r t ..... rk_ 1) = f dR - -  
1 1 1 

4rcR 4re I r t - R I  4r~ [ r ~ _ l - R I  
(2.13) 

Since D}~r ) has the cluster property, the multiple integral in (2.12) is 
effectively extended only over values of the integration variables close to 
the origin, so that the convergence of the integral is warranted. The integral 
in (2.13) becomes singular if three or more arguments r+ coincide, and if 
two or more arguments are close to the origin. However, a simple power- 
counting argument shows that these singularities do not jeopardize the 
convergence of the integral in (2.12). The convergence of the integral in 
(2.13) for large ]RI poses no problem either for k>~4. Convergence 
problems for (2.13) do arise, however, if k equals 2 or 3. For  these values 
of k the shift of integration variables that has led to (2.12) is not allowed. 
We shall consider these cases separately. 

The case k = 2  has been studied in detail previously/1) By a careful 

822/66/5-6-11 
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analysis of the asymptotic properties of the integrand of (2.2), it has been 
shown that W ~2) can be written in the form (2.12), with F {2) given as 

F(2)(r) = Irl (2.14) 
87r 

An essential ingredient in proving (2.12) for k =  2 is the charge sum rule 

n ~ dr h~2)(r) = - 1  (2.15) 
.) 

which implies that the integral of the density function D (2) over the whole 
space vanishes: 

f dr12 D(Z)(r12) 0 (2.16) 

Next we consider the special case k = 3. By using the charge sum rule 
(2.15) and its counterpart for h (3) 

n f dr3 h(3)(rl, r2, r3) = -2h(2)(r1, r2) (2.17) 

one easily proves, on a par with (2.16), 

f drt3 D(3)(rl2, r13 ) = 0 (2.18) 

As a consequence, we may write (2.2) for k = 3 as 

W ( 3 ) ( r l ,  r2, r 3 )  = e 3 f dr'l dr;  dr; 

( 1 
x 4rr I r3 - r ; I  

1 1 

41r I r~-r ] l  4re Ir2--rz[ 

, 3  i' l ) ' r - - r "  D(Z)(r'12'r'13) (2.19) 
4z 

Upon shifting the integration variables, we arrive at an expression of the 
form (2.12), with a function F (3) that depends not only on r12-r'12 and 
r13-  r]3, but also on r13 separately: 

1 1 f. 

F(3)(r12 -- r'12, r13 --r'13 ; r13) = J dR 
4zrR 4zr Ir12 --r'lz - RI 

( _ 1 1 ) (2.20) 
x 4zr I r13  - -  r '13 - -  R [  41r [ r13  - -  RI 

Clearly, this integral is convergent for large IRI. 
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The integral over R in (2.20) can be carried out by employing the 
Legendre expansion for the Coulomb factors depending on p ~ - r u - r ' ~  
and r13. In this way we get, by performing the integration over the 
spherical angles that determine R, 

'f) i f(3)(P12, p13 ; r 13) = ~-~ dRR ~ (--l)m ,=o . . . .  , ( ~T j~2  Y,,m(f112)f,(P~2, R) 

X [ r l ,  m(f113)fi(Ps3, R ) -  Yx,-,~(f~3)fz(r13, R)]  (2.21) 

with the abbreviation 

yt x / 
f,(x, y) = O(x - y) ~ + O(y - x)y77~ (2.22) 

Upon performing the integral over R, we obtain the expression 

F(3)(p12 , 1113; r13 ) ~-/'~(3)(1112, 1113)-- F(3)(p12,  r13 ) (2.23) 

with 

1 ~  ~ (--1) m 
ff(3)(r, r ' ) = ~  -21-+ i- c,(r, r') Y4m(f) Yz,_m(f') (2.24) 

l=0 m = - - I  

The coefficients c z are defined as 

r 1 Q(r,r')=~O(r--r') l (l+-l)r 

1 , 
~ 0 ( r -  r ) ( r ~ ' [ ~  (/+-ri ) r, l (2.25) 

+ \ r ' )  

for l > 0, whereas for l = 0 one has 

co(r , r ' )=-~O(r-r ' )  + 2 1 o g r  - ~ O ( r ' - r )  ~ + 2 1 o g r '  (2.26) 

As (2.23) with (2.24) shows, the three-point function F (3) can be 
expanded in terms of spherical harmonics that depend on the orientation 
of the vectors 11u for i = 2 and 3 and of r13. The higher-order functions F (k) 
with k~>4, as defined in (2.13), can likewise be expanded in spherical 
harmonics: 

k--I 
f(k)(rl ..... rk_i) = ~ c{4},{m,}(rl ..... rk_~) H Y4,,~s(fi) (2.27) 

{li}, {mi} i= 1 
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It follows from (2.13) that F (~) is invariant under simultaneous rotation 
of all variables r~. Hence, the coefficients c transform as invariant direct 
products of k -  1 spherical tensors of rank li. 

In the following we shall need a differential property of the functions 
F (~ and F (3/. For k ~> 4 we obtain by differentiation of the integrand of 
(2.13) 

(k) r A~,A~jF ( 1,...,rk_l)=0 

for all r~ # U" By inserting (2.27) and employing the identity 

with 

3~f ( r )  Yl, m( f )= [A, , , f ( r ) ]  Yl, m(f) 

(2.28) 

(2.29) 

1 d ( d )  1(1+1) 
A r ~=--  r 2 (2.30) 

-r2  9; r 2 

one finds that this implies the identity 

Arl,tiArj,ljc{ti},{m,}(rl ..... rk 1)=0 (2.31) 

for all ri # rj and all {/i}, {mi}. Likewise, one proves from (2.25)-(2.26) 

2l + 1 3 r Ar,~Ar, tct(r, r ' ) = ~ g -  ( - - r ' )  (2.32) 

which yields, in view of (2.24), 

1 
ArAr,P(3)(r, r') = ~ 3 ( r -  r') (2.33) 

Finally, for k =  2 it follows from (2.14) that 

A~ArF(2)(r) = 6(r) (2.34) 

3. A S Y M P T O T I C  B E H A V I O R  OF THE T W O - P O I N T  A N D  
T H R E E - P O I N T  C O R R E L A T I O N  F U N C T I O N S  

The asymptotic behavior of the two-point correlation function 
W~2)(rl, r2) for large values of r12 is obtained by starting from (2.12) with 
(2.14) and expanding the function F(2)(r12-r]2 ) around r12: 

1 
F(2)(r12 - r'12) = ~-~ exp( - r'12 �9 Vrl2) r 12 (3.1) 
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Let us now use the expansion formula (5'6) 

l 
exp( r "Vr ) f ( r )=4~z  ~ ~ ( - 1 )  m Yt, m(f') Yt,-m(?) 

/=Ore= l 

X _~ 1 (r,)l+ 2s 
s o (2s)!! ( 2 / + 2 s +  1)!! 

r ,(1 d ~ ' l ( d ~  2" 
x \r-drr/ r\drr] rf(r) (3.2) 

which is valid for any spherically symmetric function f (r )  for which a con- 
vergent Taylor expansion can be made. Upon applying this expansion to 
F (2), it is seen that only the terms with s = 0 and 1 cont)ibute. Further- 
more, it should be kept in mind that upon substitution of the expansion in 
(2.12), all terms with l-C0 drop out, since D(2)(r'12) is isotropic. As a result, 
we are left with the fairly simple asymptotic formula 

e2 1 ~V(2)(rl' r2)~ -- ~-~5~ L FE12 f dr]2 D(2)(r'12) -~- 3@t2 f dr'12 (F'12)2 D(2)(r"12) 
(3.3) 

All higher-order terms have disappeared from the expression on the right- 
hand side. Hence, this result gives the asymptotic expansion of W~Z)(rl, r2) 
for large values of r~2, apart from terms that decay faster than any inverse 
power of r12. This result can be checked by inserting instead of (3.2) a finite 
Taylor expansion in (2.12) and making an estimate of the remainder in a 
similar way as in refs. 7 and 8. 

The first term in (3.3) vanishes on account of (2.16). Furthermore, the 
Stillinger-Lovett sum rule (9) 

6 
n f dr r2h(2~(r)= -k-5s D (3.4) 

with k 2 =Bne 2 the squared Debye wave number, yields a simple form 
for the coefficient of r~21 in (3.3), so that we finally get the asymptotic 
expression 

W(2)(rl, r2) ~ 4rc/~rl-------- ~ + o (3.5) 

for large r12 and for any positive integer n. We have thus found that the 
asymptotic expansion for the two-point electric potential correlation 
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f u n c t i o n  W (2) is given by a single algebraic term proportional to the 
inverse of the distance. The remainder decays faster than any inverse power 
of the distance. This result for the two-particle correlation function is in 
accordance with earlier findings. (1'~~ 

Let us now consider the asymptotic behavior of the three-point 
correlation function W(3)( r l ,  r2, r3) for large separations r12 and r13. It is 
obtained by inserting the expanded form of (2.23): 

F ( 3 ) ( P 1 2 ,  P13; r13)  = exp( --ri2 " Vr l2)  

x [exp(--ri3 ~ ) --  1] ff(3)(r12 , r13 ) (3.6) 

in the integrand of (2.12). According to (2.24), the function F (3) is a sum 
of products of spherical harmonics and radial functions. The expansion of 
such a function follows by employing the general formula (5'6) 

exp(r' �9 Vr) f(r) Yl, m(f) 

= ~ ~ (-1)m'+m'[47c(21+l)(21'+l)(21"+l)]l/2 
l ' - - 0  / " = 0  m ' =  l '  m " =  --l" 

x - m '  - m " J \ O  0 Yl"m'(r') Y/"m"(r) 

• ,=o(2S)!!(2l ,+2s+l)!!(r ' )"+2"D(l ' , l , l '+2s)f(r)  (3.7) 

which is a generalization of (3.2) to functions with an angular dependence. 
The product of two 3-j symbols is sometimes called a Gaunt coefficient. (6) 
It is proportional to the integral of a product of three spherical harmonics. 
Furthermore, D is a differential symbol that is defined as 

1 (1  d~ l ' - r ' l  rZ+ I(A , (N- -[ I - - l " l ) /2  l ) l t t  ( 3 . 8 )  
D(I", l, N)=rt,--7- ~ \ r dr} t ~ r ' l !  ' 

D(l , , , l ,N)=rr , ( l  d__),, l", 1 , l .~. (3.9) \ r dr} ~ (Ar'I)(N-[I-I'[)/2 .~ ]t, 

with the operator Ar, l as defined in (2.30). From the 3-j symbols it follows 
that N - 1 l - l ' [  is an even nonnegative integer. It is positive for s > 0. 

When the expansion formula (3.7) is applied to (3.6), with (2.24) 
inserted, the resulting expression for F (3) depends on r'~2 and r't3 through 
functions of the form 

H (r'li) l'i+2sli Yll,.ml,(f'li) (3.10) 
i=2 ,3  
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with nonnegative integers l~2,113, s12, and s13. Owing to the form of (3.6), 
terms that are independent of r~13 drop out, so that one has ]13 "+" 2S13 > 0. 
Furthermore, the property (2.32) of the coefficients cz implies that at most 
one of the labels s~2 and s~3 can differ from 0. 

In view of the above, the asymptotic expansion of W(3)(rl,  r2, r3) for 
large r12 and r13 is given by a series of inverse powers of R = min(r12, r13 ). 
The coefficients in this series are (sums of) products of bounded functions 
of the ratio r12/r~3, of bounded functions of the angles determining the 
orientation of the vectors r~2, r13 , and of the basic integrals 

C•3) f dr'12 dri3 D(3)(r'12, r13) 1-I ~'' ~h,+2sl, ' a.. 1i1 YIli,rnli(rtIi) {lli~,{mli},{Sli} 
i =  2,3 

(3.11) 

for 113 + 2S13 > 0 and s12s13 = 0. 
Since at least one of the parameters sli in (3.11) vanishes and D O) is 

symmetric, it is enough to consider integrals of the type 

f dr13 D(3)(ri2, r13)(r13) l YI, m(F13) (3.12) 

for arbitrary integer l and m, with l>~ 0 and ]ml ~< l. To evaluate these, one 
inserts (2.5) and uses the general multipole sum rule for the three-point 
Ursell function 

n | dr13 h(3)(rl, r2, r3) r13 Yl, m(r13) l A 

d 

= -h(2)(rt, r2)[rl12Yl.m(fX2)-t-(~l,o(47z) -t/2] (3.13) 

which reduces to the charge sum rule (2.17) for 1=0. This sum rule 
generally holds if the equilibrium state has good cluster properties. (7'11) In 
this way one readily finds that the integrals (3.12) vanish for all l and m. 
As a consequence, we have derived 

C }~1)i}, {mli}, {sli} = 0 (3.14) 

for all allowed values of the parameters. In the next section we shall see 
that a similar result holds for the higher-order irreducible density functions 
as well and that it could have been expected on general grounds. 

The coefficients of all inverse powers of R=min(r12, rl3) in the 
asymptotic expansion of W(3)(rl, r2, r3) have now been shown to vanish. 
Hence, we have reached the asymptotic result 

W(3)(rl, r2, r3)~ o(R -n) (3.15) 
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for large distances R = m i n ( q 2 ,  r13) between one of the position vectors 
(rl) and the other two (r2, r3), and for all positive integern. In other 
words, the three-point correlation function for the electric potential fluctua- 
tions has the exponential clustering property. 

4. ASYMPTOTIC  BEHAVIOR OF THE GENERAL k-POINT 
CORRELATION FUNCTION 

We now turn to the asymptotic behavior of the irreducible correlation 
function W~ ) of arbitrary order k ~> 4. To derive its asymptotic form, we 
make a Taylor expansion of the function F {k), as before. Inserting (2.27), 
we get 

F(k)(P 12,'", Plk) 

= exp( - - 1 " ] 2  " V r , 2  . . . .  r ' lk  " V r l k )  

k 
X ~ C{lli},{mli}(rl2'"" rlk) 1-I Ylli,mli(rli) (4.1) 

{lli}, {mli} i= 2 

for p~i=rl i - r '~i .  Using the expansion formula (3.7), we find that the 
general term of the asymptotic expansion of the k-point irreducible correla- 
tion function W~(1"~ ..... rk) for large separations between r~ and r2,..., r~ is 
given by a series of inverse powers of R = min(r~2 ..... r~),  with coefficients 
that are determined by the integrals 

f , rl(k)(r, , C Ikl',}. {re,t}. {,,~} -= dr'12 �9 �9 �9 drak ~irr ,-~2,..., rlk) 

k 
X I-[ (r'li) &+2sai Ylli,mli(r'li) (4.2) 

i=2 

Owing to the property (2131), at most one of the labels Sli differs from 0. 
In view of the symmetry of D (k), we assume Sle= 0 and consider the 
integrals 

f (k) d r l k  Oirr (1"12 ..... rlk)(rle) l Yi.m(rlk) (4.3) 

which are in fact the multipole moments carried by the irreducible density 
(k) functions Dir r . 

A linear response theory argument can be used to prove that none of 
the density functions D (k) can carry multipoles of any orderJ 2) The same 
must then be true for the irreducible density functions, so that all integrals 
(4.3) vanish. 
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For l =  m = 0 a more rigorous proof of this statement has been given 
with the help of the hierarchy equations for the Ursell functions. '4) In fact, 
it has been shown that the general charge sum rules for an Ursell function 
of arbitrary order (12) 

n f drle h<e)(rl,..., re) = - kh  ~e 1)(rl ..... re 1) (4.4) 

which hold for any k >  1 provided the Ursell functions possess the 
exponential clustering property, are equivalent to the vanishing of the 
integrals (4.3) for l = m = 0. 

For higher values of l and m one can likewise prove the vanishing of 
(4.3) by starting from the complete set of multipole sum rules for the Ursell 
functions (7,11 ) 

n f drle h{e)(r, ..... re) rile Yl, m(rle) 

rkl ] 
= --h(k ')(rl ..... rk 1) [_i_~2 rlli Y~,m(fl~) + 6,,o(4rc)-1/2 (4.5) 

valid for k > 2 and l >~ 0. For k = 3 this sum rule has been written already 
in (3.13), while for l =  0 it reduces to (4.4). To show the vanishing of (4.3), 
we make use of the fact that all terms of Dlrkr ) can be associated to parti- 
tions of the labels 1,..., k, as stated in (2.8). Let us consider in particular the 
partition (1)(2).--(k), in which all labels form a group on their own. In the 
corresponding contribution to (4.3) the integral can be carried out with 
the help of (4.5). As a result, we generate the terms that are associated with 
the partitions ( 1 ) . . . ( j - 1 ) ( L k ) ( j + l ) . . . ( k - 1 ) ,  for l<~j<~k-1,  but 
with an additional minus sign. [The term that corresponds to the partition 
(1, k ) ( 2 ) - - - ( k - 1 )  is present only for l = 0 . ]  Hence, all terms that 
correspond to partitions with one group of two labels and k - 2  single 
labels (in other words, with kl = k - 2 ,  k2= 1, and k j = 0  for j > 2 )  drop 
out, if the label k is contained in the group of two. In the remaining parti- 
tions with the same {kj} the label k is again standing apart in a group of 
its own. As a consequence, we may once more employ the multipole sum rule 
(4.5) to perform the integral in all terms corresponding to the partitions with 
kl = k - 2 ,  k2 = 1, and kj = 0 for j >  2 that are left over. It is an easy matter 
to check that this procedure can be repeated. All partitions gradually come 
into play. It turns out that the final result for (4.3) is precisely 0, since the 
contributions from all partitions are successively canceling. 

From the vanishing of (4.3) one concludes that the coefficients 
Clkl)i},{mli},{Sli} , a s  defined in (4.2), are all equal to 0. Hence, the asymptotic 
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expansion for the irreducible part W.!~)(rl,..., rk) of the k-point correlation 
function for electric potential fluctuations does not contain any algebraic 
terms for k~>4, so that we can write, on a par with (3.15), 

W}~)(rl ..... rk) ~ o(R ") (4.6) 

for large r12 ..... rlk, with R = min(r12,..., rlk), and for all positive integer n. 
The reasoning followed to prove the above result can easily be 

generalized so as to establish a more general asymptotic formula for W}~ ), 
with k t> 4, that applies if its arguments fall apart into two groups with a 
large separation between the groups. In fact, one may show for any m 
satisfying 1 ~< m ~< k - 1 

Wffr)(rl ,..., rk) ~ o(R-n) (4.7) 

which is valid for large R=min(ro ), with l~<i<~m and m +  1 <~j<~k, 
and for all positive integer n. In other words, W~ ~ has the exponential 
clustering property for all k i> 4. 

5. C O N C L U D I N G  R E M A R K S  

In the previous section we have shown that the irreducible part 
W{~)(rl,..., rk) of the k-point electric potential correlation function, with 
k ~> 4, decays faster than any inverse power of the distance if one of its posi- 
tion arguments gets infinitely far removed from the others. The three-point 
electric potential correlation function W(3)(rl, r2, r3) shares this property, 
as we have seen in Section 3. The only exception to the general rule is 
thus the two-point function W(2)(rl,r2), which decays proportional to 
I r~ - r2 [ -1  for large separations of its arguments. 

We have determined the asymptotic behavior of W}2 ) by analyzing the 
expression (2.12), in which use has been made of the translation invariance 
of the system. An alternative way (~3) to establish the results proceeds by 
starting directly from (2.2) with (2.11) and showing [again with the help 
of the vanishing of (4.3)] that the integral over r;  ..... r ;  of the product of 
D}~r ) and the Coulomb factors depending on r 2 ..... r k is a short-ranged 
function of the differences r2 - r] ..... r k -  r]. It follows that W}~ ) for k ~> 3 
is of short range in the position differences r/j for 1 < i < j ~ k. 

In view of (2.11), we conclude that the asymptotic form of the full 
electric potential correlation function Wtk)(rl,..., rk) for observation points 
ri that are all far apart is given by a sum of products of slowly decaying 
two-point correlation functions W (2) for even k, whereas it goes to 0 
exponentially fast for odd k. A different way to express this property 
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follows by introducing the generating functional ~ [ f ( r ) ]  for the electric 
potential  correlat ion functions: 

(~k  f ( r )  = 0 WCk)(rl ..... r~) = 6 f ( r l ) . .  "6f(rk)  f f [ f ( r ) ]  (5.!) 

In terms of  this generating functional, the statement made above can be 
rephrased by saying that the asymptotics  of  the correlat ion functions is 
given by a generating functional ~sympt that  has a simple Gaussian form: 

t  symptES r'  =exp '] (5.2) 

In the above we have concentrated on the asymptot ic  properties of the 
correlat ion functions for the fluctuations in the electric potential. It is a 
trivial matter  to deduce similar results for the asymptot ic  behavior  of  the 
electric field correlat ion functions, as these follow directly by differentiation. 
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